A Stochastic Cost Function for Stereo Vision
نویسندگان
چکیده
The goal of this paper is to present a novel stochastic cost function for binocular stereo vision that delivers statistics about the most probable disparities on the pixel level. We drive these statistics by many independent stochastic processes so that robustness to outliers can be achieved. Each of these stochastic processes may be understood as an individual who is requested to deliver his opinion about the depth. Finally, the idea is to fuse all these individual measurements into one global disparity map. In this paper, we use random walks for this.
منابع مشابه
Stochastic Fuzzy Discrimination Information Measure Cost Function in Image Processing
A new cost function based on stochastic fuzzy discrimination information measure is introduced in this paper. Focusing on their significant parts, this cost function is used to find the optimal value of threshold for denoising image. It is, in fact, an extension of fuzzy entropy cost function by the present author. Multivariable normal distribution is used for creating focus on significant part...
متن کاملA Maximum Likelihood Stereo Algorithm
A stereo algorithm is presented that optimizes a maximum likelihood cost function. The maximum likelihood cost function assumes that corresponding features in the left and right images are Normally distributed about a common true value and consists of a weighted squared error term if two features are matched or a ( xed) cost if a feature is determined to be occluded. The stereo algorithm nds th...
متن کاملCamera Arrangement in Visual 3D Systems using Iso-disparity Model to Enhance Depth Estimation Accuracy
In this paper we address the problem of automatic arrangement of cameras in a 3D system to enhance the performance of depth acquisition procedure. Lacking ground truth or a priori information, a measure of uncertainty is required to assess the quality of reconstruction. The mathematical model of iso-disparity surfaces provides an efficient way to estimate the depth estimation uncertainty which ...
متن کاملA Review Paper on Stereo Vision Based Depth Estimation
Stereo vision is a challenging problem and it is a wide research topic in computer vision. It has got a lot of attraction because it is a cost efficient way in place of using costly sensors. Stereo vision has found a great importance in many fields and applications in today’s world. Some of the applications include robotics, 3-D scanning, 3-D reconstruction, driver assistance systems, forensics...
متن کاملA multi-stage stochastic programming for condition-based maintenance with proportional hazards model
Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...
متن کامل